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Discussion of "Elastic anisotropy of short-fibre reinforced composites", Int. J. Solids
Structures, Vol. 29, No. 23, pp. 2933-2944 (1992)

In the subject paper, Sayers employs an ingenious approximate scheme for estimating the
effective elastic response of biphase short-fiber composites with orthotropic orientation
distributions. The purpose of this discussion is threefold: To analyse Sayers' method in the
light of recent developments in the theory of homogenization of such composites; to
propose some experimental research directions, associated with these developments; and
to point out additional relevant references for the problem.

To facilitate the discussion, it is recalled that, for a biphase composite, consisting of a
matrix of stiffness C 1, containing a volumetric concentration V2 of inhomogeneities, or
fibers, of stiffness C 2

, the effective stiffness may be expressed as

(1)

where the (average) strain concentration tensor A was introduced, following Hill (1963).
This tensor is generally unknown, and it is the approximation chosen for A that characterizes
the different homogenization methods. Thus, Voigt's method (1928) corresponds to unitary
A, and the Mori-Tanaka (1973) scheme has

(2)

where T is defined in the subject paper, on p. 2937.
In eqns (2)-(3), angled brackets denote orientational averaging, weighted by a fiber

orientation probability density function. Simple misorientations have been studied with this
approach by Takao et al. (1982) and Zhao et al. (1989), in conjunction with the Mori
Tanaka assumption (2). Ferrari and Johnson (1989) presented the general harmonic analy
sis methods for the treatment of the arbitrary orientation distribution function, and dis
cussed its application to the Mori-Tanaka formalism. On these foundations, and the matri
cial reformulation method (Ferrari and Marzari, 1989), extensive sensitivity studies have
been performed (Marzari and Ferrari, 1992) to investigate the dependence of the composite
moduli on the fiber geometry, concentration, constitution and orientation distribution for
arbitrarily textured composites.

The problem of the homogenization ofa textured composite thus consists of two parts:
The identification of an appropriate concentrator A and the development of a weighted
orientational averaging procedure. On the latter, Sayers does not introduce any novelty,
while his choice of concentrator is innovative: He chooses A to correspond to the Mori
Tanaka concentrator (2) for the case of perfect alignment, i.e. with no angled brackets
about T. This apparently minor change is in reality ofmomentous consequence, well beyond
the associated computational simplifications.

To elaborate: The admissibility ofa particular concentrator, and thus of the associated
homogenization scheme, depends on the texture of the composite to be homogenized. In
particular, the Mori-Tanaka method (2) (i) yields an asymmetric effective stiffness tensor,
(ii) violates the variational bounds on the effective modulus, and (iii) fails to recover the
fiber moduli at the unitary concentration limit, when applied to the arbitrarily textured
composite (Ferrari, 1991), and is thus inadmissible in this context. For macroscopically
isotropic composites, however, the Mori-Tanaka theory is fully admissible, under criteria
(i)-(iii), unless the fibers consist of anisotropic material (ibidem). The admissibility of the
general concentrator A has been studied, essentially in terms of the stated criteria (Ferrari,
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1992), and none of the currently applied homogenization schemes has been found to comply
with these criteria. In the same work, the entire family of concentrators of the type

(3)

was proven to give a symmetric c* for any textured biphase composite. In (3), S 1 is
the matrix compliance tensor, while f(') and g(') are arbitrary functions of the fiber
concentration. Compliance with the admissibility conditions at the zero and unitary con
centration limits is guaranteed, by imposing that f(O) = I, f(l) = g(O) = g(l) = O.

Thus, the simplest fully admissible concentrator corresponds to f(x) = I -x, g(x) == 0,
provided the associated moduli comply with the known variational bounds. Much is to be
said, concerning this concentrator:

(1) It recovers the exact effective bulk modulus for the composite sphere assemblage
of Hashin (1962), as shown in Ferrari (1993).

(2) It recovers the exact moduli for the case of composites with equal shear or bulk
moduli in fiber and matrix (Ferrari et al., 1993).

(3) It is consistent with the most reliable experimental data on isotropic and aligned
composites (ibidem).

(4) It coincides with Sayers' approximation, as may be shown from the previous
formulae, through a few lines of tensor manipulations. As Sayers points out, this "approx
imation" may thus be interpreted as first homogenizing in each direction, under the assump
tion that all fibers are consistently aligned, and then performing a texture-weighted orien
tational averaging. In light of remarks (1)-(3), Sayers' approximation is concluded to be
an extremely valid one, and possibly not an approximation at all.

(5) That this assumption be the more valid the less the composite is unidirectionally
aligned is beyond doubt. However, in the particular context of injection molded composites,
in which Sayers casts his discussion, the effect of the fiber dimensional distribution is
comparable with the misalignment effects (Boscolo et al., 199 I)-both effects being small,
as far as the longitudinal moduli are concerned (ibidem).

Having discussed the relation between Sayers' hypotheses and the admissibility criteria
of effective medium theory, this note concludes with a few additional comments.

First, concerning his Fig. 2, it is pointed out that while there is a maximum achievable
second-phase concentration for a mono-size fiber distribution, no such limit may be estab
lished for composites with a fiber size gradation. Furthermore, the Mori-Tanaka theory,
employed for the predictions represented in this Figure, is scale-invariant, as it expresses
the geometric dependance through Eshelby's tensor, that is a function onhe fiber aspect
ratios only. Thus, the prediction of the theory at high concentrations must be considered
as a valid probing ground for the admissibility of the theory itself.

Second, Sayers proposes that the measurement of the six ultrasonic velocities expressed
in his eqns (38)-(43) be used to determine the five texture coefficients, that fully determine
the elastic response, at least in the case of orthotropy macroscopic and in the presence of
an isotropic matrix. This inversion procedure appears to be ill-posed, (and much more so
for transverse isotropy). It is proposed that the procedure be supplemented with a sixth
unknown, corresponding to the value of f(V2) at the known fiber concentration V2 at which
the characterization experiments are performed. It is noted that this value enters in Sayers'
anisotropy factors ai, when calculated under a homogenizing assumption of the type (3)
[with sayg( •) 0]. The advantage in this procedure is obviously that the elastically relevant
texture is determined simultaneously with the homogenization scheme. This removes the
uncertainty due to the use of the approximations inherent in the homogenizing criteria.

Finally, Sayers' discussion is limited to the texture coefficients ofrank two, and points
to the possibility of employing the coefficients determined from the inversion procedure
described above for the prediction of the strength of the composite, according to the
approach of Templeton (quoted in the subject paper). In this context, a more detailed
discussion of the relevance of the higher order coefficients would be welcome, especially in



Letter to the Editor 1149

view of the fact that, while texture coefficients of rank higher than four do not effect the
macroscopic elastic properties (Ferrari and Johnson, 1989), at least for isotropic-matrix
composites, it is not at all clear that the same should be true for strength. In this sense, the
few coefficients obtained from ultrasonic experiments may be insufficient.
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